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Summary:

The objective is to present a new method for diassion of weed species by image
processing based on active shape models. Young sesgtlings with up to four leave

taining image examples of more than 20 of the rnmopbrtant weed species in Danis
agricultural fields has been established. The imdg&e been used as training data
the construction of an active shape model for epeties. On the basis of these mog
els, an algorithm for identification of weed speaciie digital images has been devel-

tified weed seedlings) of the algorithm is abou¥B86r more.

and without mutual overlapping with other leavess tarbe identified. A database con-

oped. Preliminary results have shown that the peidoce rate (rate of correctly ident
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1. Introduction

It has been widely accepted that the use of heliscwithin agriculture must be re-
duced in order to protect the environment and élseurrces of drinking water. One way
to obtain such a reduction is to perform precisipplication of herbicides in the field,
which means using the right mixtures and dose dtbegrbicides at the right time and
place, according to the distribution and growtlyetaof occurring weed species. The
spraying technology and decision support systemprizision application of herbi-
cides exist, and potentials for herbicide savingsveen 30 and 75% have been demon-
strated (Heisett al, 1999). However, precision spraying presupposastiie distribu-
tion of different weed species has been mappeabgteg of plants; a job which, until
now, has mainly been done by way of time-consumiagual surveying. Though,

some methods and systems for automatic identificaind mapping of weed species by
machine vision have been proposedj(Manhet al, 2001; Stkefelet al, 2000).

2. Objectives

The objective is to present a new method for diassion of weed species by image
processing based on active shape models. Young seseliings with up to four leaves
and without mutual overlapping with other leaves @nsidered.

3. Method of approach

The project is a part of the large Danish projactonomous Platform and Information
system for registration of crops and weeds (ARe http://www.cs.auc.dk/~apiThe
overall objective of the project is to develop aathstruct a small autonomous robotic
vehicle for collection of information about weedwlacrops in the field. The first job for
the robot will be to acquire and process imagermédion that can provide the basis for
reliable weed maps. The images will be acquireal gnid patterng.g.a 10" 10 m

grid), and by the use of geostatistical methodgdaeaps for the weed species of inter-
est will be produced.

The weed species were recognised by their shapesegf active shape models (ASM)
(Cooteset al, 1994). The first step of this approach was tcettgyan ASM for each
weed species from a set of representative trainiages. The next step was to develop
software that could classify new unknown weed segdlby comparing them with the
weed models.

3.1.Image database

The training images for shape modelling were aeglin the field. Colour image

scenes representing more than 20 of the most impiorteed species in Danish agricul-
tural fields were collected in an image databasar¢nthan 20 examples of each species
at early growth stages). Each image scene covereapl50° 200 mm with a resolu-
tion of about 10 pixels per mm. The images werernalkertically from above with a
Canon Powershot G1 Digital Camera (2048536 pixels). To ensure diffuse illumina-
tion and a fixed camera height above the grourelcémera was mounted on top of a
transparent plastic cylinde£250 mm) covered with cloth.

From each image scene, one or more sub-imagesimogtane weed seedling each
were "cut out". As the ASM method requires greyisaamages (not colour images), the
sub-images were subsequently converted to grey-stalges by the operation

2" green-red-blue for each pixel (plus some apprégptgaaling). This operation has



proven to greatly enhance the green vegetatioontrast to the background (Woeb-
beckeet al, 1995). The grey-scale sub-images and the asedd@aecies names were
stored in a database and used as training imagésefonodel building process.

3.2.Modelling shapes of weed seedlings

The ASM techniques were originally applied to imageblems in the medical domain,
e.g.for modelling and measuringertebraein the spine foosteperosisliagnosis. How-
ever, ASM represents a general modelling technilyaeis applicable to all kinds of
shapes exhibiting a certain degree of stochastiati@n (Cootest al, 1994). An ASM
consists of a flexible shape template, describimg the object shapes can vary.

In this project, the modelling and identificatiohveeed seedlings was done by means of
Matlab® 6 (Release 12; MathWorks, 2000) together with&btive Shape Model Tool-

kit (Visual Automation Ltd., 1998). The ASM Toolkitrovides a library of basic Mat-

lab functions for modelling and recognition of stiures and shapes in digital images.

To build an ASM, the shape of each of the trairobgects must be represented by a set
of points. For the weed seedlings, the points \péaeed on the boundaries of the leaves
(an open contour for each leaf). In each trainmgge, 132 points were placed on the
leaf boundaries (Fig. 1).

The points were labelled with numbers from 0 to.I3ie placement and labelling of
points were important, as each point was to repteabe same part of the seedling from
one training example to another. For example, drieeocotyledons should always be
represented by points numbered 0-32, with thrdbeopoints placed at key positions:
points zero and 32 placed at the beginning ofeéaénear the stem, and point 16 at the
tip of the leaf. Several species had some chaiatiteincisions at the true leaves, which
could also be used as identifiable key positiof® foints between the key positions
were spaced evenly along the leaf boundaries.

Figure 1. Placement of labelled points on the leaf boundasfesome exam-
ples of white goosefooChenopodium albu).



The co-ordinates of the points were stored andyaadistatistically, species by species,
to extract characteristic shape variations of segsliwithin the same species. Before
the real analysis of shape variations could takeelit was necessary to align the set of
training shapes. The alignment was achieved bynggabtating and translating the
training shapes so that they corresponded as glasglossible with each other. The
alignment was performed in a way that minimisedsin® of squared distances between
equivalent points on different training shapes.

The analysis of the variation in shape acrosd\thégned training shapes from a given
species was based on a principal component anahgsaescribed by Cootesal,
(1994). Each of the aligned training shapes gaeetad a vector describing théoound-
ary points:

X = (X0 Y0 X0 Yar X Yinn) o P=1 LN
where &, i;) is thej™ point of thei™ shape. The mean shape, is calculated as
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The modes of variationge. the ways in which the points of the shape tenuiadwe to-
gether, can be found by applying a principal congmranalysis to the deviations,
Dx, =x;- x (i=1 ,N), from the mean. From these deviations, th&y 2n covari-

ance matrix can be calculated:
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The modes of variation of the point of the shapelmadescribed by then2init eigen-
vectorspy, ..., P2n, Of S. The eigenvectors are defined by

Sp.=/px and pp =1 (k=1 2n)
where/ 1, ¥4, / ;n are the correspondingi2igenvalues o6 (/,3 /,3 3 /,).

Thek™ principal component corresponding to the vegts defined as a weighted sum
of the elements of this vector:

b,=pe(x-Xx), i=1 ,N, k=1 2n

The principal components represent a linear indégeindecomposition of the variation
of the training shapes. The first principal companehich is associated with the larg-
est eigenvalué,1, describes the largest part of the shape varigtienfirst mode of
variation). In fact, the proportion of the totabgte variance described by ti&princi-
pal component is equal to thhig Most of the variation can usually be represeted
small number of principal components, sdty< 2n). The value of can, for instance, be
chosen in such a way that the firgtrincipal components explain a sufficiently large
proportion €.9.99%) of the total variancé; = S /, of the shapes.



Any shape in the aligned training set can be apprated as a sum of the mean shape
and a weighted sum of the fitstigenvectors:

x, @+Pb, i=1 ,N 1)

whereP=(p,p, p,) is a matrix of the first eigenvectors, ant, =(b, b, h,)’
is a vector of weights (principal components), hi calculated as

b, =P"(x,- x), i=1 ,N

Eqgn. (1) permits generation of a new shape exatpteplacingo; by a new vector of
weight valuesh =(b b, h)". Provided that the weights are not to far fronozéne

new synthetic example will be similar to thosehe training set, as the change in shape
will be determined by the modes of variation repreed by the training shapes. Suit-
able limits for the weight vectob, are derived by examining the distributions of the
weight values to generate the training set. If Geunsdistributions are assumed, the set

of weights can be chosen, so that the Mahalanatiante,D’ , from the mean shape
is less than a suitable valuB?
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Figure 2 illustrates the three first modes of vaoiafor white goosefootGhenopodium
album), as found by analysing examples like those gimgfigure 1. The variation
around the mean model shape is shown by vatying, andbs one by oneldmax = 2)
while keeping the othdrweights at zero.

The first and most dominating mode correspondsatging growth stages and accounts
for 59% of the total shape variance in the trairseyy The second and third modes ac-
count for 17 and 10% of the total shape variarespectively, and correspond to V-
positions of the cotyledons and the two first tiesves, respectively.
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Figure 2. lllustration of the first three modes of variatifor white goosefoot
(Chenopodium albujn




3.3.Modelling grey-level appearance

The active shape model of a given weed specieddbewsed for locating new exam-

ples of this species. For this purpose, not orgysthape, but also the typical grey-level

appearance near the edges of the leaves are impdrtas is accounted for by examin-
ing the grey levels in the region around each efléiibelled model points. Since a given
point represents a particular part of the seedtimg grey-level pattern about that point

in images of different examples will often be simil

For each point, a one-dimensional grey-level peafibrmal to the model curve (con-
tour) passing through this point is considered. pittdiles are characterised by their
mean and by their variation to give a statisticdatiption of the expected profiles
about each point. The detailed calculation procetias been presented by Coaes
al., (1994).

3.4.Seedling recognition in image scenes

On the basis of results from the ASM analysis, lgorihm for locating and identifying
weed seedlings in image scenes was developede fiirsh step of this algorithm, the
image scene is searched for green objects, whichaential weed seedlings. Only ob-
jects having similar size as weed seedlings aecta for further processing.

In the second step, each of the selected objettgastigated to determine the weed
species. This step involves an iterative searchguhare in which each species model is
refined gradually until the best fit to the objecundaries is obtained. Before the itera-
tive procedure is started, a preliminary modelratignt with respect to pose (position
and orientation) and scale takes place. After thatshape refining iterations are car-
ried out by repeating the following three step® (8. 3):

1. Compare the region of the image around each maiiet with the grey-level mod-
els to calculate the displacement of the pointireguo move it to a better location.

2. From these displacements calculate the optimakadgnts to the translation, rota-
tion and scale and to the shape parametevge{ghts as defined above).

3. Update the model parameters and the point positongspondingly (under the re-
strictions imposed on the shape by tip@ssible modes of variation in the model).

These three steps are repeated until the changlee parameters between two succes-
sive iterations are sufficiently small. The redtdim fitting four different models to a
white goosefoot seedlingCbienopodium albujrappears from Fig. 4.
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Figure 3. lllustration of a single iteration of the objeetasch procedure used for ac-
tive shape models (before (a) and after (b) mothegpoints). The green arrows in-
dicate the desired displacements of the model point



Since there are only(< 2n) modes of variation available in the model, wiiile re-
guired displacements of the points representde®jrees of freedom, the final model can
only be an approximation to the object shape.

When a model search has been carried out for @tspecies searched for, only one
step remains, namely the classification step. indtep each object is classified accord-
ing to the species model that gives the best fihéoobject boundary. The assessment of
the degree of fit for a given species model is Basea combined criterion that takes
two aspects (sub-criteria) into account:

a. How well the deformed model shape resembles thecobhape, and
b. How much the model needs to be deformed to achievbest fit.

A model which fits the object very well and onlyteres a moderate deformation of the
mean model shape will result in a high fit scoree Tesemblance between the model
and the object (sub-criterion a.) can be measwdhbearatioa; (0£ a; £ 1), of pixels
covered both by the modahdthe object (intersection of sets) to the numbepiréls
covered by the modaind/orthe object (union of sets). The model coveragkefed

as pixels within the four polygons made up by #eaf contours. The ratio will tend to
one in case of close resemblance. To measure lus® the deformed model is to the
mean model shape (sub-criterion b.), one can usellitig's T test for two samples
(Anderson, 1958) to test the hypothesis that thefsshape parameters is an outcome
of the multivariate Gaussian distribution of sh@peameters in the training set. The test
will result in a significance level; (0 £ a, £ 1), and high values will indicate low de-
gree of deformation. A combined criterion can bewated asa =a/aj (O£ a£1,f

> 0, g> 0). Preliminary investigations have indicatedttthe resemblance sub-criterion
is more important than the deformation sub-criterio most cases = 1.52 together

with g=0.44 seem to result m> 0.5 if the model corresponds to the same weed sp
cies as the object (Fig. 4). The object is theeefdassified according to the model that

Model: dead nettle Model: charlock Model: white goosefodvlodel: speedwell\(e-
(Lamium spp. (Sinapsis arvensjs (Chenopodium albujm ronica spp)

New 4

tion (mean 2
model shape) g
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Figure 4. Result from fitting four different models to a wénigoosefoot seedling
(Chenopodium albur).



results in the highest-value. However, if th&-values for all of the models are less
than 0.5, the object cannot be identified as orte@tpecies represented by the models.

4. Results and discussion

Until now, models for 12 weed species have beeemgead, and the weed identification
procedure has been tested preliminarily for sixdvggecies. However, the number of
tests performed will not be sufficient to put fordaccurate statements about the per-
formance rate of the identification procedure (itkeod that a given weed seedling will
be correctly identified), although preliminary résundicate that the rate of correctly
identified weed seedlings is around 80% or more.

In comparison with other deformable modelgy.snakes (Manh, 2001), one of the ad-
vantages of the ASM technique is that the modelsad@nly take leaf shapes into ac-
count, but also the overall geometry of the segdliThis aspect makes it easier to dis-
criminate between species.

The model parameters associated with the ASM ofengveed species are sufficient
for reconstruction of the shapes of real weed ssgsllEach parameter corresponds to a
mode of shape or pose variation with an intuitivetglerstandable interpretation, which
may help assessing whether the model is suffit@nodel the natural variation.

The algorithm for identification of weeds has net peen designed and optimised for
real-time use. Therefore, the speed of the prasess| rather low (several seconds to
identify a weed seedling when using a common WirglBW@ of today). However, the
ASM Toolkit, which was used for this study is prbhanot the most speed efficient
implementation of the ASM approach, one of theamaaseing that the toolkit runs un-
der Matlab. An alternative and probably faster Gsmplementation of ASM and AAM
(Active Appearance Models) has been developedeat éthnical University of Den-
mark (see http://www.imm.dtu.dk/~aam/).
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