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The objective is to present a new method for classification of weed species by image 
processing based on active shape models. Young weed seedlings with up to four leaves 
and without mutual overlapping with other leaves are to be identified. A database con-
taining image examples of more than 20 of the most important weed species in Danish 
agricultural fields has been established. The images have been used as training data for 
the construction of an active shape model for each species. On the basis of these mod-
els, an algorithm for identification of weed species in digital images has been devel-
oped. Preliminary results have shown that the performance rate (rate of correctly iden-
tified weed seedlings) of the algorithm is about 80% or more. 
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1. Introduction 
It has been widely accepted that the use of herbicides within agriculture must be re-
duced in order to protect the environment and the resources of drinking water. One way 
to obtain such a reduction is to perform precision application of herbicides in the field, 
which means using the right mixtures and dose rates of herbicides at the right time and 
place, according to the distribution and growth stages of occurring weed species. The 
spraying technology and decision support systems for precision application of herbi-
cides exist, and potentials for herbicide savings between 30 and 75% have been demon-
strated (Heisel et al., 1999). However, precision spraying presupposes that the distribu-
tion of different weed species has been mapped by counting of plants; a job which, until 
now, has mainly been done by way of time-consuming manual surveying. Though, 
some methods and systems for automatic identification and mapping of weed species by 
machine vision have been proposed (e.g. Manh et al., 2001; Sökefeld et al., 2000). 

2. Objectives 
The objective is to present a new method for classification of weed species by image 
processing based on active shape models. Young weed seedlings with up to four leaves 
and without mutual overlapping with other leaves are considered. 

3. Method of approach 
The project is a part of the large Danish project, Autonomous Platform and Information 
system for registration of crops and weeds (API, see http://www.cs.auc.dk/~api/). The 
overall objective of the project is to develop and construct a small autonomous robotic 
vehicle for collection of information about weeds and crops in the field. The first job for 
the robot will be to acquire and process image information that can provide the basis for 
reliable weed maps. The images will be acquired in a grid pattern (e.g. a 10 ́  10 m 
grid), and by the use of geostatistical methods, weed maps for the weed species of inter-
est will be produced. 

The weed species were recognised by their shapes by use of active shape models (ASM) 
(Cootes et al., 1994). The first step of this approach was to develop an ASM for each 
weed species from a set of representative training images. The next step was to develop 
software that could classify new unknown weed seedlings by comparing them with the 
weed models. 

3.1. Image database 
The training images for shape modelling were acquired in the field. Colour image 
scenes representing more than 20 of the most important weed species in Danish agricul-
tural fields were collected in an image database (more than 20 examples of each species 
at early growth stages). Each image scene covers approx. 150 ́  200 mm with a resolu-
tion of about 10 pixels per mm. The images were taken vertically from above with a 
Canon Powershot G1 Digital Camera (2048 ´  1536 pixels). To ensure diffuse illumina-
tion and a fixed camera height above the ground, the camera was mounted on top of a 
transparent plastic cylinder (Æ 250 mm) covered with cloth. 

From each image scene, one or more sub-images containing one weed seedling each 
were "cut out". As the ASM method requires grey-scale images (not colour images), the 
sub-images were subsequently converted to grey-scale images by the operation 
2 ́  green-red-blue for each pixel (plus some appropriate scaling). This operation has 
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proven to greatly enhance the green vegetation in contrast to the background (Woeb-
becke et al., 1995). The grey-scale sub-images and the associated species names were 
stored in a database and used as training images for the model building process. 

3.2. Modelling shapes of weed seedlings 
The ASM techniques were originally applied to image problems in the medical domain, 
e.g. for modelling and measuring vertebrae in the spine for osteperosis diagnosis. How-
ever, ASM represents a general modelling technique that is applicable to all kinds of 
shapes exhibiting a certain degree of stochastic variation (Cootes et al., 1994). An ASM 
consists of a flexible shape template, describing how the object shapes can vary. 

In this project, the modelling and identification of weed seedlings was done by means of 
MatlabÒ 6 (Release 12; MathWorks, 2000) together with the Active Shape Model Tool-
kit (Visual Automation Ltd., 1998). The ASM Toolkit provides a library of basic Mat-
lab functions for modelling and recognition of structures and shapes in digital images. 

To build an ASM, the shape of each of the training objects must be represented by a set 
of points. For the weed seedlings, the points were placed on the boundaries of the leaves 
(an open contour for each leaf). In each training image, 132 points were placed on the 
leaf boundaries (Fig. 1). 

The points were labelled with numbers from 0 to 131. The placement and labelling of 
points were important, as each point was to represent the same part of the seedling from 
one training example to another. For example, one of the cotyledons should always be 
represented by points numbered 0-32, with three of the points placed at key positions: 
points zero and 32 placed at the beginning of the leaf near the stem, and point 16 at the 
tip of the leaf. Several species had some characteristic incisions at the true leaves, which 
could also be used as identifiable key positions. The points between the key positions 
were spaced evenly along the leaf boundaries. 

Figure 1. Placement of labelled points on the leaf boundaries of some exam-
ples of white goosefoot (Chenopodium album). 
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The co-ordinates of the points were stored and analysed statistically, species by species, 
to extract characteristic shape variations of seedlings within the same species. Before 
the real analysis of shape variations could take place, it was necessary to align the set of 
training shapes. The alignment was achieved by scaling, rotating and translating the 
training shapes so that they corresponded as closely as possible with each other. The 
alignment was performed in a way that minimised the sum of squared distances between 
equivalent points on different training shapes. 

The analysis of the variation in shape across the N aligned training shapes from a given 
species was based on a principal component analysis, as described by Cootes et al., 
(1994). Each of the aligned training shapes gave rise to a vector describing the n bound-
ary points: 
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The modes of variations, i.e. the ways in which the points of the shape tend to move to-
gether, can be found by applying a principal component analysis to the deviations, 
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The modes of variation of the point of the shape can be described by the 2n unit eigen-
vectors, p1, …, p2n, of S. The eigenvectors are defined by 
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where l 1, ¼ , l 2n are the corresponding 2n eigenvalues of S (
n221 lll ³³³ � ). 

The kth principal component corresponding to the vector xi is defined as a weighted sum 
of the elements of this vector: 
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The principal components represent a linear independent decomposition of the variation 
of the training shapes. The first principal component, which is associated with the larg-
est eigenvalue, l 1, describes the largest part of the shape variation (the first mode of 
variation). In fact, the proportion of the total shape variance described by the kth princi-
pal component is equal to the l k. Most of the variation can usually be represented by a 
small number of principal components, say t (t < 2n). The value of t can, for instance, be 
chosen in such a way that the first t principal components explain a sufficiently large 
proportion (e.g. 99%) of the total variance, l T = Sk l k, of the shapes. 
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Any shape in the aligned training set can be approximated as a sum of the mean shape 
and a weighted sum of the first t eigenvectors: 

 Niii ,,1, �=+@ Pbxx  (1) 

where )( 21 tpppP �=  is a matrix of the first t eigenvectors, and T
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is a vector of weights (principal components), which is calculated as 
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Eqn. (1) permits generation of a new shape example by replacing bi by a new vector of 
weight values, T

tbbb )( 21 �=b . Provided that the weights are not to far from zero, the 
new synthetic example will be similar to those in the training set, as the change in shape 
will be determined by the modes of variation represented by the training shapes. Suit-
able limits for the weight vector, b, are derived by examining the distributions of the 
weight values to generate the training set. If Gaussian distributions are assumed, the set 
of weights can be chosen, so that the Mahalanobis distance, 2
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Figure 2 illustrates the three first modes of variation for white goosefoot (Chenopodium 
album), as found by analysing examples like those given in Figure 1. The variation 
around the mean model shape is shown by varying b1, b2 and b3 one by one (Dmax = 2) 
while keeping the other b-weights at zero.  

The first and most dominating mode corresponds to varying growth stages and accounts 
for 59% of the total shape variance in the training set. The second and third modes ac-
count for 17 and 10% of the total shape variance, respectively, and correspond to V-
positions of the cotyledons and the two first true leaves, respectively. 

Figure 2. Illustration of the first three modes of variation for white goosefoot  
(Chenopodium album). 
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3.3. Modelling grey-level appearance 
The active shape model of a given weed species should be used for locating new exam-
ples of this species. For this purpose, not only the shape, but also the typical grey-level 
appearance near the edges of the leaves are important. This is accounted for by examin-
ing the grey levels in the region around each of the labelled model points. Since a given 
point represents a particular part of the seedling, the grey-level pattern about that point 
in images of different examples will often be similar. 

For each point, a one-dimensional grey-level profile normal to the model curve (con-
tour) passing through this point is considered. The profiles are characterised by their 
mean and by their variation to give a statistical description of the expected profiles 
about each point. The detailed calculation procedure has been presented by Cootes et 
al., (1994). 

3.4. Seedling recognition in image scenes 
On the basis of results from the ASM analysis, an algorithm for locating and identifying 
weed seedlings in image scenes was developed. In the first step of this algorithm, the 
image scene is searched for green objects, which are potential weed seedlings. Only ob-
jects having similar size as weed seedlings are selected for further processing. 

In the second step, each of the selected objects is investigated to determine the weed 
species. This step involves an iterative search procedure in which each species model is 
refined gradually until the best fit to the object boundaries is obtained. Before the itera-
tive procedure is started, a preliminary model alignment with respect to pose (position 
and orientation) and scale takes place. After that, the shape refining iterations are car-
ried out by repeating the following three steps (see Fig. 3): 

1. Compare the region of the image around each model point with the grey-level mod-
els to calculate the displacement of the point required to move it to a better location. 

2. From these displacements calculate the optimal adjustments to the translation, rota-
tion and scale and to the shape parameters (b-weights as defined above). 

3. Update the model parameters and the point positions correspondingly (under the re-
strictions imposed on the shape by the t possible modes of variation in the model). 

These three steps are repeated until the changes of the parameters between two succes-
sive iterations are sufficiently small. The result from fitting four different models to a 
white goosefoot seedling (Chenopodium album) appears from Fig. 4. 

Figure 3. Illustration of a single iteration of the object search procedure used for ac-
tive shape models (before (a) and after (b) moving the points). The green arrows in-

dicate the desired displacements of the model points. 

(a) (b)
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Since there are only t (< 2n) modes of variation available in the model, while the re-
quired displacements of the points represents 2n degrees of freedom, the final model can 
only be an approximation to the object shape. 

When a model search has been carried out for all weed species searched for, only one 
step remains, namely the classification step. In this step each object is classified accord-
ing to the species model that gives the best fit to the object boundary. The assessment of 
the degree of fit for a given species model is based on a combined criterion that takes 
two aspects (sub-criteria) into account: 

a. How well the deformed model shape resembles the object shape, and 
b. How much the model needs to be deformed to achieve the best fit. 

A model which fits the object very well and only requires a moderate deformation of the 
mean model shape will result in a high fit score. The resemblance between the model 
and the object (sub-criterion a.) can be measured as the ratio, a1 (0 £ a1 £ 1), of pixels 
covered both by the model and the object (intersection of sets) to the number of pixels 
covered by the model and/or the object (union of sets). The model coverage is defined 
as pixels within the four polygons made up by the leaf contours. The ratio will tend to 
one in case of close resemblance. To measure how close the deformed model is to the 
mean model shape (sub-criterion b.), one can use Hotelling's T2 test for two samples 
(Anderson, 1958) to test the hypothesis that the set of shape parameters is an outcome 
of the multivariate Gaussian distribution of shape parameters in the training set. The test 
will result in a significance level, a2 (0 £ a2 £ 1), and high values will indicate low de-
gree of deformation. A combined criterion can be calculated as qf aaa 21=  (0 £ a £ 1, f  
> 0, q > 0). Preliminary investigations have indicated that the resemblance sub-criterion 
is more important than the deformation sub-criterion. In most cases f  = 1.52 together 
with q = 0.44 seem to result in a > 0.5 if the model corresponds to the same weed spe-
cies as the object (Fig. 4). The object is therefore classified according to the model that 

Before deforma-
tion (mean 
model shape) 

After 
deformation 

Model: dead nettle 
(Lamium spp.) 

Model: charlock 
(Sinapsis arvensis) 

Model: white goosefoot 
(Chenopodium album) 

Model: speedwell (Ve-
ronica spp.) 

Figure 4. Result from fitting four different models to a white goosefoot seedling  
(Chenopodium album). 

a1 = 56% 
a2 = 70% 
a = 35% 

a1 = 58%  
a2 = 5% 
a = 12% 

a1 = 84% 
a2 = 59% 
a = 61% 

a1 = 50% 
a2 = 42% 
a = 24% 
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results in the highest a-value. However, if the a-values for all of the models are less 
than 0.5, the object cannot be identified as one of the species represented by the models. 

4. Results and discussion 
Until now, models for 12 weed species have been generated, and the weed identification 
procedure has been tested preliminarily for six weed species. However, the number of 
tests performed will not be sufficient to put forward accurate statements about the per-
formance rate of the identification procedure (likelihood that a given weed seedling will 
be correctly identified), although preliminary results indicate that the rate of correctly 
identified weed seedlings is around 80% or more. 

In comparison with other deformable models, e.g. snakes (Manh, 2001), one of the ad-
vantages of the ASM technique is that the models do not only take leaf shapes into ac-
count, but also the overall geometry of the seedlings. This aspect makes it easier to dis-
criminate between species. 

The model parameters associated with the ASM of a given weed species are sufficient 
for reconstruction of the shapes of real weed seedlings. Each parameter corresponds to a 
mode of shape or pose variation with an intuitively understandable interpretation, which 
may help assessing whether the model is sufficient to model the natural variation. 

The algorithm for identification of weeds has not yet been designed and optimised for 
real-time use. Therefore, the speed of the process is still rather low (several seconds to 
identify a weed seedling when using a common Windows PC of today). However, the 
ASM Toolkit, which was used for this study is probably not the most speed efficient 
implementation of the ASM approach, one of the reasons being that the toolkit runs un-
der Matlab. An alternative and probably faster C++ implementation of ASM and AAM 
(Active Appearance Models) has been developed at the Technical University of Den-
mark (see http://www.imm.dtu.dk/~aam/). 
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